
Ensuring and Reliable Storage in Cloud Computing

Katukam Ganesh Maligireddy Saidireddy KrishnaChaitanya.Katkam
 MTech(CSE) HOD (CSIT) Asst Prof (CSE)

JNTU Hyderabad JNTU Hyderabad Nigama Engineering College

ABSTRACT-Cloud storage enables users to remotely store their
data and enjoy the on-demand high quality cloud applications
without the burden of local hardware and software management.
Though the benefits are clear, such a service is also relinquishing
users’ physical possession of their outsourced data, which
inevitably poses new security risks towards the correctness of the
data in cloud. In order to address this new problem and further
achieve a secure and dependable cloud storage service, we
propose in this paper a flexible distributed storage integrity
auditing mechanism, utilizing the homomorphic token and
distributed erasure-coded data. The proposed design allows users
to audit the cloud storage with very lightweight communication
and computation cost. The auditing result not only ensures strong
cloud storage correctness guarantee, but also simultaneously
achieves fast data error localization, i.e., the identification of
misbehaving server. Considering the cloud data are dynamic in
nature, the proposed design further supports secure and efficient
dynamic operations on outsourced data, including block
modification, deletion, and append. Analysis shows the proposed
scheme is highly efficient and resilient against Byzantine failure,
malicious data modification attack, and even server colluding
attacks

1 INTRODUCTION
Several trends are opening up the era of Cloud Computing,
which is an Internet-based development and use of computer
technology. The ever cheaper and more powerful processors,
together with the software as a service (SaaS) computing
architecture, are transforming data centers into pools of
computing service on a huge scale. The increasing network
bandwidth and reliable yet flexible network connections
make it even possible that users can now subscribe high
quality services from data and software that reside solely on
remote data centers. Moving data into the cloud offers great
convenience to users since they don't have to care about the
complexities of direct hardware management. The pioneer of
Cloud Computing vendors, Amazon Simple Storage Service
(S3) and Amazon Elastic Compute Cloud (EC2) [1] are both
well known examples. While these internet-based online
services do provide huge amounts of storage space and
customizable computing resources, this computing platform
shift, however, is eliminating the responsibility of local
machines for data maintenance at the same time. As a result,
users are at the mercy of their cloud service providers for the
availability and integrity of their data. Recent downtime of
Amazon's S3 is such anexample[2].
From the perspective of data security, which has always been
an important aspect of quality of service, Cloud Com-puting
inevitably poses new challenging security threats for number
of reasons. Firstly, traditional cryptographic primitives for the

purpose of data security protection cannot be directly adopted
due to the users' loss control of data under Cloud Computing.
Therefore, verification of correct data storage in the cloud
must be conducted without explicit knowledge of the whole
data. Considering various kinds of data for each user stored in
the cloud and the demand of long term continuous assurance
of their data safety, the problem of verifying correctness of
data storage in the cloud becomes even more challenging.
Secondly, Cloud Computing is not just a third party data
warehouse. The data stored in the cloud may be frequently
updated by the users, including insertion, deletion,
modification, appending, reordering, etc. To ensure storage
correctness under dynamic data update is hence of paramount
importance. However, this dynamic feature also makes
traditional integrity insurance techniques futile and entails
new solutions. Last but not the least, the deployment of Cloud
Computing is powered by data centers running in a
simultaneous, cooperated and distributed manner. Individual
user's data is redundantly stored in multiple physical
locations to further reduce the data integrity threats.
Therefore, distributed protocols for storage correctness
assurance will be of most importance in achieving a robust
and secure cloud data storage system in the real world.
However, such important area remains to be fully explored in
the literature.
In this paper, we propose an effective and flexible distributed
scheme with explicit dynamic data support to ensure the
correctness of users' data in the cloud. We rely on erasure-
correcting code in the file distribution preparation to prov ide
redundancies and guarantee the data dependability. This
construction drastically reduces the communication and
storage overhead as compared to the traditional replication-
based file distribution techniques. By utilizing the
homomorphic token with distributed verification of erasure-
coded data, our scheme achieves the storage correctness
insurance as well as data error localization: whenever data
corruption has been detected during the storage correctness
verification, our scheme can almost guarantee the
simultaneous localization of data errors, i.e., the identification
of the misbehaving server(s)
Our work is among the first few ones in this field to consider
distributed data storage in Cloud Computing. Our
contribution can be summarized as the following three
aspects.
1) Compared to many of its predecessors, which only provide
binary results about the storage state across the distributed
servers, the challenge-response protocol in our work further
provides the localization of data error.
2) Unlike most prior works for ensuring remote data

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5157

integrity, the new scheme supports secure and efficient
dynamic operations on data blocks, including: update, delete
and append.
3) Extensive security and performance analysis shows that
the proposed scheme is highly efficient and resilient against
Byzantine failure, malicious data modification attack, and
even server colluding attacks.
The rest of the paper is organized as follows. Section II
introduces the system model, adversary model, our design
goal and notations. Then we provide the detailed description
of our scheme in Section III and IV. Section V gives the
security analysis and performance evaluations, followed by
Section VI which overviews the related work. Finally,
Section VII gives the concluding remark of the whole paper.

2 PROBLEM STATEMENT
2.1 System Model
Representative network architecture for cloud data storage is
illustrated in Figure 1. Three different network entities can be
identified as follows:
* User: users, who have data to be stored in the cloud and
rely on the cloud for data computation, can be either
enterprise or individual customers.
* Cloud Server (CS): an entity, which is managed by cloud
service provider (CSP) to provide data storage service and
has significant storage space and computation resources (we
will not differentiate CS and CSP hereafter).
* Third Party Auditor (TPA): an optional TPA, who has
expertise and capabilities that users may not have, is trusted
to assess and expose risk of cloud storage services on behalf
of the users upon request.

In cloud data storage, a user stores his data through a CSP
into a set of cloud servers, which are running in a
simultaneous, cooperated and distributed manner. Data
redundancy can be employed with technique of erasure-
correcting code to further tolerate faults or server crash as
user's data grows in size and importance. Thereafter, for
application purposes, the user interacts with the cloud servers
via CSP to access or retrieve his data. In some cases, the user
may need to perform block level operations on his data. The
most general forms of these operations we are considering are
block update, delete, insert and append.

As users no longer possess their data locally, it is of critical
importance to assure users that their data are being correctly
stored and maintained. That is, users should be equipped with
security means so that they can make continuous correctness
assurance of their stored data even without the existence of
local copies. In case that users do not necessarily have the
time, feasibility or resources to monitor their data, they can
delegate the tasks to an optional trusted TPA of their
respective choices.
2.2 Adversary Model
From user’s perspective, the adversary model has to capture all
kinds of threats towards his cloud data integrity. Because
cloud data do not reside at user ’s local site but at CSP’s
address domain, these threats can come from two different
sources: internal and external attacks. For internal attacks, a

CSP can be self-interested, untrusted and possibly malicious.
Not only does it desire to move data that has not been or is
rarely accessed to a lower tier of storage than agreed for
monetary reasons, but it may also attempt to hide a data
loss incident due to management errors, Byzantine failures
and so on. For external attacks, data integrity threats may
come from outsiders who are beyond the control domain of
CSP, for example, the economically motivated attackers. They
may compromise a number of cloud data storage servers in
different time intervals and subsequently be able to modify
or delete users’ data while remaining undetected by CSP.

2.3 Design Goals
To ensure the security and dependability for cloud data
storage under the aforementioned adversary model, we aim
to design efficient mechanisms for dynamic data verifica -
tion and operation and achieve the following goals: (1)
Storage correctness: to ensure users that their data are
indeed stored appropriately and kept intact all the time
in the cloud. (2) Fast localization of data error: to effect
ively locate the malfunctioning server when data corrupt -
tion has been detected. (3) Dynamic data support: to
maintain the same level of storage correctness assurance
even if users modify, delete or append their data files in
the cloud.(4) Dependability: to enhance data availability
against Byzantine failures, malicious data modification and
server colluding attacks, i.e. minimizing the effect brought by
data errors or server failures. (5) Light weight: to enable
users to perform storage correctness checks with minimum
overhead.

3. ENSURING CLOUD DATA STORAGE
In cloud data storage system, users store their data in the
cloud and no longer possess the data locally. Thus, the
correctness and availability of the data files being stored o n
the distributed cloud servers must be guaranteed. One of the
key issues is to effectively detect any unauthorized data
modification and corruption, possibly due to server
compromise and/or random Byzantine failures. Besides, in
the distributed case when such inconsistencies are
successfully detected, to fin d which server the data error lies
in is also of great significance, since it can be the first step to
fast recover the storage errors. And/or identifying potential
threats of external attacks
To address these problems, our main scheme for ensuring

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5158

cloud data storage is presented in this section. The first
part of the section is devoted to a review of basic tools
from coding theory that is needed in our scheme for file
distribution across cloud servers. Subsequently, it is also
shown how to derive a challenge-response protocol for
verifying the storage correctness as well as identifying
misbehaving servers. Finally, the procedure for file retrieval
and error recovery based on erasure-correcting code is
outlined.
3.1 File Distribution Preparation
It is well known that erasure-correcting code may be used to
tolerate multiple failures in distributed storage systems. In
cloud data storage, we rely on this technique to disperse the
data file F redundantly across a set of n = m + k distributed
servers. An(m, k) Reed-Solomon erasure-correcting code is
used to create k redundancy parity vectors from m data
vectors in such a way that the original m data vectors can be
reconstructed from any m out of the m + k data and parity
vectors. By placing each of the m + k vectors on a different
server, the original data file can survive the failure of any k
of the m + k servers without any data loss, with a space
overhead of k/m. For support of efficient sequential I/O to
the original file, our file layout is systematic, i.e., the
unmodified m data file vectors together with k parity vectors
is distributed across m + k different servers.
Let F = (F1 , F2 , . . . , Fm) and Fi = (f1i , f2i, . . . , fli)
(i ∈ {1, . . . , m}). Here T (shorthand for transpose) de-notes
that each F

T

i is represented as a column vector, and l denotes
data vector size in blocks. All these blocks are elements of
GF (2p

 / \

). The systematic layout with parity vectors is
achieved with the inform -ation dispersal matrix A, derived
from an m×(m+k) Vandermonde matrix [26]:

 / 1 1 1 1 1 ⎟
⎜ β1 β2
⎜ ⎟

βm βm+1 βn ⎟

⎝ ⎠ ,
β1−1 β2−1 βm−1 βm+1 β

where β
n−1

j
 After a sequence of elementary row transform
ationns, the desired matrix A can be written as

 (j ∈ {1, . . . , n}) are distinct elements randomly

 / 1 0 0 p11 p12 p1k \
 ⎜ 0 1 0 p

21 p22 p

 A= (I / P) ⎜ ⎜

2k \

 \ 0 0 1 pm1 pm2 p

mk /

Where I is a m × m identity matrix and P is the secret
parity generation matrix with size m × k. Note that A is
derived from a Vander monde matrix, thus it has the prop
erty that any m out of the + k columns form an invertible
matrix. By multiplying F by A, the user obtains the
encoded file:
 G = F · A = (G(1) , G(2) , . . . , G(m) , G(m+1) , . . . , G(n)

= (F
)

1 , F2 , . . . , Fm , G(m+1) , . . . , G(n)

where G
),

(j) = (g1j) , g2j) , . . . , glj))T

As noticed, the multiplication reproduces the
original data file vectors of F and the remaining
part (G

(j∈ {1, . . . , n}).

 (m+1) , . . . , G(n)

) are k parity vectors
generated based on F.

3.2 Challenge Token Pre-computation
In order to achieve assurance of data storage correctness and
data error localization simultaneously, our scheme entirely
relies on the pre-computed verification tokens. The main idea
is as follows: before file distribution the user pre-compute s a
certain number of short verification tokens on individual ve
ctor G(j)

 (j ∈ {1, . . . , n}), each token covering a random
subset of data blocks. Later, when the user wants to make
sure the storage correctness for the data in the cloud, he
challenges the cloud servers with a set of randomly generated
block indices. Upon receiving challenge, each cloud server
computes a short “signature” over the specified blocks and
returns the m to the user. The values of these signatures
should match the corresponding tokens pre-computed by the
user. Meanwhile, as all servers operate over the same subset
of the indices, the requested response values for integrity
check must also be a valid codeword determined by secret
matrix P.

Algorithm 1 Token Pre-computation
1: procedure
2: Choose parameters l, n and function f, φ;
3: Choose the number t of tokens;
4: Choose the number r of indices per verification;
5: Generate master key Kprp and challenge kchal
6: for vector G

;
(j)

7: for round i← 1, t do
 , j ← 1, n do

Derive α = f kchal
 (i)

and k(i)
prp from K

Compute V
PRP

i
(j)=

∑r
q=1αq

i*G(j)[Øk
(i)

prp
 (q)] .

 end for
10: end for
11: end for
12: Store all the vi
13: end procedure

s locally.

3.3 Correctness Verification and Error Localization
 Error localization is key pre requisitefor eliminating errors in
storage systems.However, many previous schemes don’t
explicitly consider the problem of data errorlocalization,
Our scheme outperforms those by integrating the correctess
verification and error localization in our challenge response
protocol: the response values from servers for each challen ge
not only determine the correctness of the distributed
storage,but also contain information to locate potential data
error(s).
Algorithm 2

1) procedure CHALLENGE(i)
2) Recompute α i = fkchal (i) and kprp

(i) from KP RP ;

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5159

3) Send {α i, kprp

(i)

4) Receive from servers:
} to all the cloud servers;

{Ri
(j) =∑r

q=1
 αq

i G(j) [Økprp
(i)

for(j←m+1,n)do
(q)]|1 ≤ j ≤ n}

 R(j)← PR(j)−P∑r
q=1 fkj(SIq,j).αq

i,Iq=Økprp
(i)

(q)

7: end for
8: if ((Ri

(1) , . . . , Ri
(m)) · P==(Ri

(m+1), . . . , Ri
(n)

9: Accept and ready for the next challenge.
)) then

10: else
11: for (j ← 1, n) do
12: if (Ri

(j) ! =vi
(j)

13: return server j is misbehaving.
) then

14: end if
15: end for
16: end if
17: end procedure

3.4 File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can
reconstruct the original file by downloading the data vector s
assurance is a probabilistic one. However, by choosing
system param-eters (e.g., r, l, t) appropriately and conducting
enough times of verification, we can guarantee the successful
file retriev al with high probability. On the other hand,
whenever the data corruption is detected, the comparison of
pre-computed tokens and received response values can
guarantee the identificati on of misbehaving server(s), again
with high probability, which will be discussed shortly.
Therefore, the user can always ask servers to send back
blocks of the r rows specified in the challenge and regenerate
the correct blocks by erasure correction, shown in Algorithm
3, as long as there are at most k misbehaving servers are
identified. The newly recovered blocks can then be
redistributed to the misbehaving servers to maintain the
correctness of storage.
Algorithm 3 Error Recovery
procedure

% Assume the block corruptions have been detected
among
% the specified r rows;
% Assume s ≤ k servers have been identified

misbehaving
2: Download r rows of blocks from servers;
3: Treat s servers as erasures and recover the blocks.
4: Resend the recovered blocks to corresponding

servers.
5: end procedure

3.5 Towards Third Party Auditing
 As discussed in our architecture, in case the user does not
have the time, feasibility or resources to perform the
storage correctness verification, he can optionally delegate
this task to an independent third party auditor, making the
cloud storage publicly verifiable. However, as pointed out
by the recent work [27], [28], to securely introduce an

effective TPA, the auditing process should bring in no new
vulnerabilities towards user data pri-vacy. Namely, TPA
should not learn user ’s data content through the delegated
data auditing. Now we show that with only slight
modification, our protocol can support privacy-preserving
third party auditing
 The new design is based on the observation of linear
property of the parity vector blinding process. Recall that the
reason of blinding process is for protection of the secret
matrix P against cloud servers.

4. PROVIDING DYNAMIC DATA OPERATION SUPPORT
So far, we assumed that F represents static or archived data.
This model may fit some application scenarios, such as
libraries and scientific datasets. However, in cloud data
storage, there are many potential scenarios where data stored
in the cloud is dynamic, like electronic documents, photos, or
log files etc. Therefore, it is crucial to consider the dynamic
case, where a user may wish to perform various block-level
perations of update, delete and append to modify the data file
while maintaining the storage correctness assurance.

In this section, we will show how our scheme can
explicitly and efficiently handle dynamic data operations for
cloud data storage.
4.1 Update Operation
In cloud data storage, sometimes the user may need to modify
some data block(s) stored in the cloud, from its current value
fij to a new one, fij + fij . We refer this operation as data
update. Due to the linear property of Reed-Solomon code, a
user can perform the update operation and generate the
updated parity blocks by using fij only, without involving any
other unchanged blocks.blocks may need to be deleted. The
delete operation we are considering is a general one, in which
user replaces the data block with zero or some special
reserved data symbol. From this point of view, the delete
operation is actually a special case of the data update
operation, where the original data blocks can be replaced with
zeros or some predetermined special blocks. Therefore, we
can rely on the update procedure to support delete operation,
i.e., by setting fij in F to be − fij

 . Also, all the affected tokens
have to be modified and the updated parity information has to
be blinded using the same method specified in update
operation.

ΔF · A = (ΔG(1) , . . . , ΔG(m) , ΔG(m+1) , . . . , ΔG(n)

= (ΔF
)

1 , . . . , ΔFm , ΔG(m+1) , . . . , ΔG(n)

where ΔG
),

(j) (j ∈ { m + 1, . . . , n}) denotes the update
information for the parity vector G(j)

4.2 Delete Operation
 .

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5160

 Sometimes, after being stored in the cloud, certain data
Blocks may need to be deleted.The delete operation we are
Considering is a general one, in which user replaces the
data block with zero or some special reserved data symbol.
From this point of view, the delete operation is actually a
special case of the data update operation, where the
original data blocks can be replaced with zeros or some
predetermined special blocks. Therefore, we can rely on
the update procedure to support delete operation, i.e., by
setting _fij in _F to be−_fij . Also, al l the affected tokens
have to be modified and he updated parity information
has to be blinded using thesame method specified in update
operation.
4.3 Append Operation
In some cases, the user may want to increase the size of his
stored data by adding blocks at the end of the data file, which
we refer as data append. We anticipate that the most frequent
append operation in cloud data storage is bulk append, in
which the user needs to upload a large number of blocks (not
a single block) at one time.
Given the file matrix F illustrated in file distribution
preparation, appending blocks towards the end of a data
file is equivalent to concatenate corresponding rows at the
bottom of the matrix layout for file F. In the beginning,
there areonly l rows in the file matrix. To simplify the
presentation ,we suppose the user wants to append m
blocks at the end offile F, denoted as (fl+1,1, fl+1,2, ...,
fl+1,m) (We can always use zero padding to make a row
of m elements.). With the secret matrix P, the user can
directly calculate the append
(fl+1,1, ..., fl+1,m) · P = (g (m+1)), ..., g(n))
 To support block append operation, we need a slight
modification to our token precomputation. Specifically, we
require the user to expect the maximum size in blocks,
denoted as lmax, for each of his data vector. The idea of
supporting block append, which is similar as adopted in
[13], relies on the initial budget for the maximum anticipa
ted data size lmaxin each encoded data vector as well as the
system parameter rmax = ⌈ r ∗ (lmax/l)⌉ for each pre
computed challenge response token. The pre-computation of
the i-th token onserver j is modified as follows:
 l+1 l+1
G(j) [Iq] = G(j) [φk(i) (q)] , [φk

prp prp
(i) (q)] ≤ l

 0 , [φk

(i) (q)] > l ,

4.4 Insert Operation
An insert operation to the data file refers to an append

operation at the desired index position while maintaining the
same data block structure for the whole data file, i.e., inser
ting a block F [j] corresponds to shifting all blocks starting
with index j + 1 by one slot. An insert operation may affect
many rows in the logical data file matrix F, and a substantial
number of computations are required to renumber all the
subsequent blocks as well as re-compute the challenge-
response tokens. Therefore, an efficient insert operation is
difficult to supp ort and thus we leave it for our future work.

5. SECURITY ANALYSIS AND PERFORMANCE EVALUATION

In this section, we analyze our proposed scheme in terms of
security and efficiency. Our security analysis focuses on the
adversary model defined in Section II. We also evaluate the
efficiency of our scheme via implementation of both file dist
r ibution preparation and verification tokenpre computation.
5.1 Correctness Analysis
 First, we analyze the correctness of th verification
procedure. Upon obtaining all the response Rij)

R

s from
servers and taking a way the random blind values from

ij) (j ∈ {m + 1, . . . , n}), the user relies on the equation (Ri1)
, . . . , Rim)) · P = (Rim+1) , . . . , Rin)

5.2 Security Strength

) to ensure the storage
currectness

In this section, we analyze the security strength of our
schemes against server colluding attack and explain why
blind-ing the parity blocks can help improve the security
strength of our proposed scheme.Recall that in the file
distribution preparation, the redun-dancy parity vectors are
calculated via multiplying the file matrix F by P, where P is
the secret parity generation matrix we later rely on for storage
correctness assurance. If we disperse all the generated vectors
directly after token precomputation, i.e., without blinding,
malicious servers that collaborate can reconstruct the secret P
matrix easily: they can pick blocks from the same rows
among the data and parity vectors to establish a set of m · k
linear equations and solve for the m · k entries of the parit
generation matrix P. Once they have the knowledge of P,
those malicious servers can consequently modify any part of
the data blocks and calculate the corresponding parity blocks,
and vice versa, making their codeword relationship always
consistent. Therefore, our stor-age correctness challenge
scheme would be undermined—even if those modified blocks
are covered by the specified rows, the storage correctness
check equation would always hold.

1 2 3 4 5 6 7 8 9 10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 (number of queried rows) r (number of queried rows)
 (as a percentage of l)0 (as a percentage of l)0

5.3 Performance Evaluation
We now assess the performance of the proposed storage
auditing scheme. We focus on the cost of file distribu tion
preparation as well as the token generation. Our experiment

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5161

is conducted on a system with an Intel Core 2 processor
running at 1.86 GHz, 2048 MB of RAM, and a 7200 RPM
Western Digital 250 GB Serial ATA drive Algorithms are
implemented using open-source erasure coding library
Jerasure [31] written in C. All results represent the mean
of 20 trials.
1) File Distribution Preparation:
We implemented the gen- As discussed, file distribution
preparation includes the generation of parity vectors (the
encoding part) as well as the corresponding parity blinding
part. We consider two sets of different parameters for the
(m, k) Reed-Solomon encoding ,both of which work over
GF (216

2) Challenge Token Pre-computation

). Figure 4 shows the total cost for preparing a 1
GB file before outsourcing. In the figure on the left, we
set the number of data vectors m constant at10,while
decreasing the number of parity vec tors k from 10 to 2. In
the one on the right, we keep the total number of data and
parity vectors m + k fixed at 22, and change the number of
data vectors m from18 to10.

Although in our scheme the number of verification token t is a
fixed priori determined before file distribution, we can
overcome this issue by choosing sufficient large t in
practice. For example, when t is selected to be 7300 and
14600, the data file can be verified every day for the next
20 years and 40 years, respectively, which should be of
enough use in practice. Note that instead of directly
computing ach token, our implementation uses the Horner
algorithm suggested in [21] to calculate token vij) from the
back, and achieves a slightly faster which only require sr
multiplication and (r − 1) X OR operations. With Jerasure
library [31],the multiplication over GF (216

) in our
experiment is based on discrete logarithms.

RELATED WORK
 Juels et al. [9] described a formal “proof of retrieve ability”
(POR) model for ensuring the remote data integrity. Their
scheme combines spot-checking and error correcting code to
ensure both possession and retrieve ability of files on archive
service systems. Shacham etal. [16] built on this model and
constructed a random linear function based homomorphic
authenticator which enables unlimited number of challenges
and requires less communication overhead due to its usage of
relatively small size of BLS signature. Bowers et al.
[17]proposed an improved framework for POR protocols that
generalizes both Juels and Shacham’s work. Later in their
subsequent work, Bowers et al. [20] extended POR model to
distributed systems. However, all these schemes are focusing
on static data. The effectiveness of their schemes rests
primarily on the preprocessing steps that the user conducts
before outsourcing the data file F. Any change to the contents
of F, even few bits, must propagate through the error-
correcting code and the corresponding random shuffling
process, thus introducing significant computation and
communication complexity. Recently, Dodis et al. [19] gave
theoretical studies on generalized framework different
variants of existing POR work.

CONCLUSION

In this paper, we investigate the problem of data security yin
cloud data storage, which is essentially a distribute dstorage
system. To achieve the assurances of cloud data integrity and
availability and enforce the quality of dependable cloud
storage service for users, we propose an effective and flexible
distributed scheme with explicit dynamic data support,
including block update, delete, and append. We rely on
erasure-correcting code in the file distribution preparation to
provide redundancy parity vectors and guarantee the data
dependability. By utilizing the homomorphic token with
distributed verification of erasure-coded data, our scheme
achieves the integration of storage correctness insurance and
data error localization, i.e., whenever data corruption has
been detected during the storage correctness verification
across the distributed servers, we can almost guarantee the
simultaneous identification of the misbehaving
server(s).Considering the time, computation resources, and
even the related online burden of users, we also provide the
extension of the proposed main scheme to support third-party
auditing, where users can safely delegate the integrity
checking tasks to third-party auditors and beworry-free to use
the cloud storage services. Through detailed security and
extensive experiment results, we show that our scheme is
highly efficient and resilient to Byzantine failure, malicious
data modification attack, and even server colluding attacks.

ACKNOWLEDGMENTS:
This work was supported in part by the US National Science
Foundation under grant CNS-0831963, CNS-0626601, CNS-
0716306, and CNS-0831628.

REFERENCES
[1]C. Wang, Q. Wang,K. Ren,and W. Lou“Ensuring data storage security in

cloud computing,” in Proc. of IWQoS’09, July 2009, pp.19.
[2] Amazon.com, “Amazon web services (aws)” Online at

http://aws.amazon.com/, 2009.
[3] Sun Microsystems, Inc., “Building customer trust in cloud com-puting

with transparent security,” Online at https://www.sun.
com/offers/details/sun transparency.xml, Nov2009

[4]M.Arrington,“Gmail disaster: Reports or mass email deletions”Online
at 06/12/28/gmail- disasterreports-of-mass-email-
deletions/,December2006

[5]Amazon.com, “Amazon s3 availability event: July 20,2008,” Online at
http://status.aws.amazon.com/s3-20080720.html, July2008.

[6]S.Wilson,“Appengine outage,” Online at http://www.cio-
weblog.com/50226711/appengine outage.php, June 2008.

[7] B. Krebs, “Payment Processor Breach May Be Largest Ever,” On-line
at http://voices.washingtonpost.com/ securityfix/2009/
01/payment processor breach may b.html, Jan. 2009.

[8]A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrie vability for
Large Files,” Proc. of CCS '07, pp. 584–597, 2007.

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-son,
and D. Song, “Provable data possession at untrusted stores,”in Proc. of
CCS’07, Alexandria, VA, October 2007,pp. 598-609

[10] M.A.Shah, M. Baker, J. C.Mogul, and R. Swaminath an, “Audit-ing to
keep online storage services honest,” in Proc. of HotOS’07.Berkeley,
CA, USA: USENIX Association, 2007, pp. 16.

[11] M. A. Shah, R. Swaminathan, and M. Baker, “Priva cy-preserving audit
and extraction of digital contents,” Cryptology ePrintArchive,
Report 2008/186, 2008, http://eprint.iacr.org/

[12] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “S calable and

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5162

Efficient Provable Data Possession,” Proc. of SecureComm '08, pp. 1–
10, 2008.

[13]Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud com-
puting,” in Proc. of ESORICS’09, volume 5789 of LNCS. Springer-
Verlag, Sep. 2009, pp. 355-370.

[14] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” in Proc. of CCS’09, 2009, pp.
213-222.

[15] H. Shacham and B. Waters, “Compact proofs of retrievability,” inProc.
of Asiacrypt’08, volume 5350 of LNCS, 2008, pp. 90-107

Krishnachaitanya.Katkam MTech(CSE)Completed MTech (CSE) from
JNTUH in 2011. Having 4+ years ofExperience in Teaching. Present
working as a Asst Prof (CSE) in Nigama EngineeringCollege. Published
international journals also. Interested in Mobile Computing, Computer
Networks & Mobile Application Development

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5163

	1 Introduction
	2 Problem Statement
	3. Ensuring Cloud Data Storage
	5. Security Analysis And Performance Evaluation
	Conclusion

